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In this research, we have studied the growth status of fungal species when | “*College of Education for Pure
mixing three types of dichotomous branching and Tip death due to overcrowding | Sciences, Wasit University, Irag,
and Tip-tip anastomosis, this biological phenomenon is represented as a Wasit, 52001

mathematical model as partial differential equations (PDEs). The solution of this
system depends on the numerical solution and this solution gives an approximate
solution. Some steps in this solution such as steady states, phase plane and
travlling wave solution. The results will describe the success or failure of the
growth of the types of fungi studied and we used some codes (pplane7, Pdepe) | ! Corresponding Author
in the numerical solution because there is a kind of difficulty in the direct
mathematical solution.
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Introduction overcrowding (X), Tip-tip anastomosis (W) and
We will speak about a new type of fungal Dichotomous branching (). as shown in Table (1)
branching with fungal death is Tips death due to which illustrates these types[1,2,3].
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Table 1: illustrates branching biological type and symbol of this type and versions.

Tip death due to overcrowding X 8§ = —f3p?
Tip-tip anastomosis W 5 = —pn?
Dichotomous branching Y d=aun
Reference:[2,3]
Mathmetical Model fungi into letters, and these letters depend on the
Biological characterization of  mushrooms: behavior of the species in terms of [4]

mathematicians saw that they turn the branches of

p = hyphen density in unit filament length per unit area.
n = tips density
Fungi also depend on the availability of energy.

The model below represents our goal in this paper

op _
P nv —yp
(D

on d(nv)

E - = ax + 6(p; n)
Where :6(p,n) = —f3p% — pin? + ayn
Then the system (1) become

op

Fr nv —yp
on d(nv) 5 5
% ox — Bsp” — Bin” + ayn 2)

Non-dimensionlision and Stability

In this part demonstrate how these parameters can be positioned as lower dimensionlision [2,3]

op _

ac P

I I a(p?+n?) +pn ®3)
at dx p

Whreroc=mandﬁ=ﬂ
14 14

Now, to find steady states when take from system (3)

n—p=0 - n=p
And on the other hand
—a(p?+n®)+pn=0 - n =0 then - (p,n) = (0,0)
_ B _B (B B
and n=o0 TPy, _’(p’")_<ﬁ'5)
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So that is clear the steady states are (p,n) = (0,0) and (p,n) = (%,%) threrfore we take Jacobain of these

equations [5,6]

) = [—;ip —Za:z + B]

We can classify the cirtical points according to the matrix Jacobain (0,0)

100)=[! [1),]
Thus |A — AI|l = 0 we get two values of A :-
A =1
=B
Then we take the Jacobain at (2%,%):
e =[5 of

Thus |A — AI| = 0 we get two values of A :-
-1+/1-48

2
We note the probabilities of the £. [7,8,9]

/11,2 =

£ B

, ) stable spiral , as shown in figure
2a 2a

If B is positive, we get the point (0,0) saddle point and the point (
(1) .by using (MATLAB pplane7 ).

Figure 1:The (p,n) plane:-note that a trajectory connects the saddle point in (0,0) and stable spiral

in point (%%

Travelling wave solution
In this part, we will speak about the travelling waves solution, let = x — ct, and we impose
n(x,t) = N(z)

(4)
p(x,t) = P(2)
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where P(z) indicates the density profiles, and wave ¢ in positive x — direction , where ¢ > 1 and
(c) rate of propagation of colony. N(z) and P(z) a =B = 1. We observe the travelling waves
positive function for (z) The functions N(x,t), solution of the system in t and t in the form
p(x,t) are traveling and moving at constant speed of [10].
o _ _ 0P on_ _ON  on_oN
a - o ot "oz’ at oz
Therefore it becomes the system of
P -1
—=—[N-P
0z c [ ]
(5)
oN 1[(2+2)+ l, ¢#0 <z<
_ = — — 00 (0]
7 1_c a(pc+n pn], ¢ , z
We notice the steady states of the system (5) we and (£, £). Unstable spiral for ¢> 1 ,as shown
2a’ 2a’" !
get the point (p,n)=(0,0) which is saddle point in Figure (2) by using MATLAB

Figure 2: The (P,N) plane note that a trajectory connects when c=2, a« = § = 1 the saddle pointin

(0,0) and Unstable spiral in point (%%

Numercal solution In Fig (3) shows the solution of System (2) with
Since System (2) is completely unsolvable, so we parameters « = 0.5, § =1 and ¢ = 3.0657 for
resort to numerical solutions, here we use the time t=1,10,20,.....400. as shown in figure (3)
(pdepe) code in (MATLAB) to show the behavior In Fig (4) where the blue line represents the
of branch and tips. tips(n) . as shown in figure (4)
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In Fig (5) where the red line represents the In Fig (6) where the blue line represented tips
branches (p). as shown in figure (5) (n) with the red line represented branches (p). as

shown in figure (6).
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Figure 3: The initial condition of solution to the system (3) with the parameters a = 0.5, =1
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Figure 4:Solution of the system (3) with the parameters a¢ = 0.5, 8 = 1 and the wave speed ¢ =
3.0657 for t=1,10,20,......... ,200 where the blue line represented tips (n).
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Figure 5 :Solution of the system (3) with the parameters a = 0.5, 8 = 1 and the wave speed ¢ = 3.0657
for t=1,10,20.,......... ,200 where the red line represents branches (p).
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Figure 6 :Solution of the system (3) with the parameters a = 0.5, 8 = 1 and the wave speed ¢ =
3.0657 for t=1,10,20,......... ,200 where the blue line represented tips (n) with the red line

represents branches (p).

From these operations, we obtain the relationship a increases the travelling waves solution ¢
between the values of the travelling waves decreased, as shown in Figure (7)

solution ¢ and ataking v = 8 =d = 1, where

c - wavespeed
N
m
L

Figure 7 : the relation between waves speed ¢ and a values

Then, we obtain the relationship between the travelling waves solution c is increased, as shown
values of the travelling wave solution c¢ and in Figure (8)

ptaking v = @ = d = 1, where S increases the

¢ - wavespeed
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Figure 8 : the relation between waves speed c and f values
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Conclusion

In this paper, we recall the most important
conclusions drawn from the application of
mathematical modeling in the growth of fungi.

1) Mathematical models are able to predict the
duration of fungal growth with minimal cost.

2) We used a mathematical solution to shorten
the time, cost and effort to get correct results
even though there is an error rate.

3) We will take a mathematical model by using
the partial solution of the differential system

Equations (PDEsS) . The results of this solution
describe the success or failure of the growth
of the fungal species studied.

4) We used some codes in numerical analysis due
to some direct difficulties.  Mathematical
solution.

5) We used non- dimensionlisition, Stability,
traveling wave solutions Numerical solutions
and numerical solutions to initial value
problems by using MATLAB
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